热门关键词: 魔法早教  考拉进阶  全解 
首页 >  高中飞跃 >  高中通用 >  怎样解题 >  怎样解题 高中数学 解题方法与技巧 第十三次修订 2016版

怎样解题 高中数学 解题方法与技巧 第十三次修订 2016版

  • 售  价: ¥ 22.35
  • 定  价:¥ 29.80
  • 商品编号: G00030150
  • 积  分:29
  • 顾客评价:
  • 库  存:

  • 服  务: 本商品由 提供,并负责配送及开具发票
ISBN编号: 9787552254464
出版社: 北京教育
出版时间: 20150401
作者: 薛金星
开本: 04
页数: 0
版次印次: 第一版
装帧: 01
商品已下架!
商品参数
  • ISBN编号:9787552254464
  • 出版社:北京教育
  • 出版时间:20150401
  • 作者:薛金星
  • 开本:04
  • 页数:0
  • 版次印次:第一版
  • 装帧:01
 

怎样解题 高中数学 解题方法与技巧 第十三次修订 2016版

基本信息

作  者:王金贵 李炳升

出 版 社:北京教育

    编:薛金星

出版时间:2015年2月

字  数:410000

版  次:1

页  数:266

印刷时间: 2016年3月

开  本: 16开

印  次: 2

纸  张: 胶版纸

I S B N :978-7-5522-5446-4

包  装: 平装

    价: 29.8

内容简介

《怎样解题——高中数学解题方法与技巧》以《课程标准》为依据,以现行高中教材为蓝本,在内容上按照高考要求精心挑选,科学设计,真正做到方法技巧一网打尽,解题奥秘尽在其中。

一、题型设计,贴近高考

囊括所有高考题型,高考考什么题型,我们就讲什么题型,练什么题型。

二、解法展示,举一反三

与一般教辅书不同的是,我们提供的是一类题的解题方法,做一道题,会一类题,达到举一反三的效果。

三、一题多解,拓展思维

对于一道题从不同的角度去分析,从横向拓展学生的思维,解一个题,掌握多种方法。

编辑推荐

《怎样解题》系列丛书是金星教育研发的一套专讲解题方法与技巧的工具书,是解题类图书的优秀品牌,历经多次修订,畅销全国。高考本质上是对学生解题能力的检验,学生解题能力的高低直接决定了高考的成败。一本好的教辅图书应以提高学生的解题能力为目标,用最少的题训练出学生最强的解题能力。 《怎样解题——高中数学解题方法与技巧》以提高学生的解题能力为目标,打破传统工具书求多求全的题海模式,按照高考题型,精选近几年的高考真题、名校模拟题,不但进行详尽的解析,还突出一题多解、多题通解,提炼学科思想方法,拓展学生的思维。选择《怎样解题》就掌握了解题的金钥匙,就拥有了打开成功之门的金钥匙!

目录

第一篇数学思想篇第一章函数与方程思想

第一节怎样利用函数的性质解题(3

怎样利用函数的性质比较函数值的大小[必考] 3

怎样利用函数的性质求函数解析式(或函数值)[必考] 4

怎样利用函数的性质求参数的值(或取值范围)[必考] 4

第二节怎样利用函数与方程、

不等式的关系解题(6

怎样利用函数与方程、不等式的关系比较函数值的大小 7

怎样利用函数与方程、不等式的关系解决恒成立问题 7

怎样利用函数与方程、不等式的关系求参数的取值范围 8

怎样利用函数与方程、不等式的关系解决不等式证明问题 9

第三节怎样构造函数或方程解题(10

怎样构造函数求方程的根或判断方程根的个数 11

怎样构造函数证明不等式 11

怎样构造函数解恒成立问题 12

第四节怎样利用函数与方程思想解三角问题(14

怎样利用函数与方程思想解三角函数求值问题 14

怎样利用函数与方程思想解三角形[必考] 15

怎样利用函数与方程思想求三角函数的最值 15

第五节怎样利用函数与方程思想解数列问题(17

怎样利用函数与方程思想解数列求值问题[必考] 17

怎样利用函数与方程思想解数列单调性及最值问题 18

怎样利用函数与方程思想解与数列有关的范围问题 18

第六节怎样利用函数与方程思想解立体几何问题(20

怎样利用函数与方程思想解决几何体的体积及面积最值问题 20

怎样利用函数与方程思想解折叠问题[必考] 22

怎样利用函数与方程思想解探究性问题[必考] 23

第七节怎样利用函数与方程思想解解析几何问题(25

怎样利用函数与方程思想解直线与圆锥曲线的位置关系问题 25

怎样利用函数与方程思想解圆锥曲线的最值与范围问题 26

怎样利用函数与方程思想解定值、定点问题[必考] 27

第二章数形结合思想

第一节怎样利用数形结合思想解集合问题(31

怎样借助Venn图解集合问题 31

怎样利用数轴解集合问题[必考] 31

怎样利用图象解集合问题 32

第二节怎样利用数形结合思想解函数问题(32

怎样利用函数图象解比较函数值大小的问题[必考] 33

怎样利用函数的图象解函数的性质问题[必考] 33

怎样利用数形结合思想解函数最值问题[必考] 34

怎样利用函数的图象解求参数范围问题[必考] 34

怎样利用函数图象解函数零点问题[必考] 34

第三节怎样利用数形结合思想解不等式(35

怎样利用数轴解不等式(组)[必考] 36

怎样利用函数图象解不等式(组) 36

怎样利用函数图象解不等式恒成立问题[必考] 36

怎样利用平移直线法解线性规划问题[必考] 37

怎样利用代数式的几何意义求非线性目标函数的最值 38

第四节怎样利用数形结合思想解方程根的问题(40

怎样利用图象判断方程根的个数[必考] 40

怎样根据方程根的存在情况求参数的取值[必考] 40

第五节怎样利用数形结合思想解三角函数问题(41

怎样利用三角函数线解题[必考] 41

怎样利用三角函数图象求解析式[必考] 42

怎样利用数形结合思想解与三角函数性质有关问题[必考] 43

怎样利用数形结合思想解与三角函数有关的方程的根或函数零点问题 44

第六节怎样利用数形结合思想解平面向量问题(45

怎样利用向量的平行四边形(或三角形)法

则解平面向量问题[必考] 45

怎样利用向量模的几何意义解向量问题 46

怎样利用向量数量积的几何意义解平面向量问题 46

第七节怎样利用数形结合思想解解析几何问题(47

怎样利用数形结合思想解决直线与圆的

位置关系问题[必考] 47

怎样利用数形结合思想解圆锥曲线问题[必考] 48

第三章分类讨论思想

第一节由参数的变化引起的分类讨论(50

怎样用分类讨论法解含参数不等式问题[必考] 50

怎样用分类讨论思想解函数与导数问题[必考] 51

怎样用分类讨论思想解方程问题 51

怎样用分类讨论思想解圆锥曲线问题 52

第二节问题的条件是分类给出的分类讨论(53

怎样解与分段函数有关的不等式和绝对值不等式[必考] 54

怎样用分类讨论思想解含参数的方程问题[必考] 54

怎样用分类讨论思想解数列问题[必考] 55

第三节解题过程不能统一叙述时进行分类讨论(56

怎样用分类讨论思想解集合问题[必考] 56

怎样用分类讨论思想解排列、组合、二项式定理问题 57

怎样用分类讨论思想解概率问题[必考] 57

怎样用分类讨论思想解函数最值问题[必考] 58

第四节简化和避免分类讨论的策略(60

直接回避 60变更主元 60

合理运算 60数形结合 61

第四章转化与化归思想

第一节正与反、一般与特殊的转化(63

怎样用一般与特殊的转化解函数问题 63

怎样用正与反的转化解概率问题 63

怎样用反证法证明命题 64

第二节常量与变量的转化(65

怎样用变更主元法解恒成立问题 65

怎样用构造函数法证明不等式 66

第三节数与形的转化(67

怎样用数与形的转化解方程问题 67

怎样用数与形的转化解平面几何问题[必考] 67

怎样用数与形的转化解圆锥曲线问题 68

第四节相等与不等之间的转化(69

怎样用相等与不等之间的转化解方程问题 69

怎样用相等与不等之间的转化解不等式问题 69

第五节数学各分支及其内部之间的转化(70

怎样用数列与函数的转化解题 70

怎样用转化思想解三角函数问题 71

怎样用转化与化归思想解立体几何问题[必考] 71

第五章数学建模

第一节函数模型(73

一次函数与二次函数模型 74

分段函数模型 74

指、对、幂型函数模型 75

第二节方程、不等式模型(76

基本不等式模型[必考] 76

方程、不等式模型 77

第三节数列模型(78

等差数列、等比数列模型[必考] 78

递推数列模型 79

第四节三角函数、解三角形模型(81

三角函数模型 81解三角形模型[必考] 82

第五节立体几何模型(83

几何体的表面积与数学建模[必考] 83

几何体的体积与数学建模[必考] 84

第六节解析几何模型(85

直线与圆模型 85圆锥曲线模型[必考] 86

第七节概率、统计模型(87

概率模型[必考] 87统计模型[必考] 88

第八节线性规划模型(89

怎样利用线性规划求最优解[必考] 89

怎样利用线性规划求最值[必考] 90

第二篇数学方法篇

第一章怎样解最值问题

第一节怎样解二次函数最值问题(93

开口方向、对称轴、所给区间均确定[必考] 94

所给区间确定,对称轴位置变化[必考] 94

所给区间变化,对称轴位置确定[必考] 95

区间、对称轴位置都不确定 95

第二节怎样用判别式法求最值(97

求形如y=ax2+bx+c〖〗dx2+ex+fad0)的函数值域 97

二元二次多项式中变量取值范围问题 98

第三节怎样用基本不等式求最值(98

直接应用基本不等式求最值 99

应用基本不等式的变形技巧 99

第四节怎样用换元法求最值(103

代数换元法[必考] 103三角换元法 104

第五节怎样用函数单调性求函数最值(106

形如y=ax+b〖〗x的函数的最值[必考] 107

应用单调性法求复合型函数最值 107

第六节怎样解三角函数最值问题(108

正、余弦函数性质法求三角函数最值[必考] 108

“辅助角”公式法求三角函数最值[必考] 109

配方法求三角函数最值[必考] 109

利用三角函数的有界性求三角函数最值[必考] 110

数形结合法求三角函数最值[必考] 110

换元法求三角函数最值 111

第七节怎样用导数法求最值(112

利用导数求函数最值[必考] 112

用导数求解含参数的函数最值 113

第八节怎样用数形结合法求最值(115

数形结合法求解线性规划问题[必考] 115

数形结合法求解无理式的和、差最值问题 115

第九节怎样解立体几何中的最值问题(117

三视图中的最值问题 117

怎样利用空间问题平面化思想求解几何体

表面距离最短问题 117

怎样用公理与定义法求最值 118

函数法求最值[必考] 119

第十节怎样解解析几何中的最值问题(120

怎样利用转化法解关于圆的最值问题[必考] 120

怎样利用定义、性质转化法解最值问题[必考] 121

怎样利用转化法解圆锥曲线上的动点与圆

上动点间的距离最值问题[必考] 122

怎样解圆锥曲线上的点与定点、定直线距离最值问题 123

第十一节怎样解多元变量最值问题(124

怎样解多元变量之间具有相等关系的最值问题[必考] 124

怎样解多元变量之间具有不等关系的最值问题 125

怎样用“配凑法”求多元变量最值问题[必考] 125

第二章向量法

第一节怎样进行向量运算(127

怎样进行向量的坐标运算[必考] 127

怎样进行平面向量的线性运算[必考] 128

怎样应用平面向量基本定理解题[必考] 128

怎样应用平面向量的数量积解题[必考] 129

怎样求向量夹角[必考] 130

怎样求向量的模[必考] 130

怎样应用向量垂直的判定解题[必考] 130

怎样求平面向量的数量积[必考] 131

怎样解向量最值问题[必考] 132

第二节怎样解与向量有关的三角函数问题(134

怎样进行三角形中的向量计算[必考] 134

怎样用向量法解三角形“四心”问题 134

怎样解向量与三角函数的综合题[必考] 135

第三节怎样用向量法解立体几何问题(136

怎样用基底向量法解立体几何问题 137

怎样用向量法解空间位置关系问题[必考] 138

怎样用向量法解空间角问题[必考] 139

怎样用向量法解空间中的距离问题[必考] 140

第四节怎样用向量法解解析几何问题(142

怎样利用向量式的几何意义解题 143

怎样利用向量的坐标式解解析几何题 143

第五节怎样用向量法求最值问题(145

怎样构造向量求无理式的最值 145

怎样构造向量求分式和的最值 146

第三章怎样解对称问题

第一节怎样解关于点的对称问题(147

怎样解函数中关于点的对称问题 147

怎样解曲线(或函数图象)关于点的对称问题 148

第二节怎样解关于直线的对称问题(149

怎样解点关于直线的对称问题 150

怎样解直线关于直线的对称问题 150

怎样解曲线关于直线的对称问题[必考] 151

第三节怎样解函数中的对称问题(152

怎样用函数对称性解题[必考] 152

怎样解分段函数的对称性问题 153

第四节怎样解三角函数中的对称问题(154

怎样求正、余弦函数的对称轴方程[必考] 154

怎样求三角函数的对称中心[必考] 155

第四章怎样求轨迹方程

第一节求曲线轨迹方程的常用方法(156

直接法 157定义法 158代入法 159

参数法 159交轨法 160几何法 161

第二节怎样解圆锥曲线与立体几何中的轨迹问题(162

怎样求圆锥曲线中弦中点的轨迹 163

怎样求立体几何中的轨迹方程 163

第五章怎样解三角变换问题

第一节三角函数常用的变换技巧(165

怎样用角的变换解题 166

怎样用函数名称变换解题 167

怎样用“1”的变换解题 168

第二节怎样运用三角公式进行三角恒等变换(170

怎样变形及逆用三角公式解题 170

怎样应用升幂与降幂公式解题[必考] 171

怎样用辅助角公式解题[必考] 172

第三节怎样进行三角函数图象的变换(174

怎样解三角函数图象的变换问题[必考] 175

怎样由三角函数图象求解析式[必考] 176

第六章怎样证明不等式

第一节不等式证明的常用方法(178

怎样用比较法证明不等式[必考] 178

怎样用基本不等式证明不等式[必考] 179

怎样用综合法与分析法证明不等式 180

怎样用放缩法证明不等式 180

怎样用反证法证明不等式 181

第二节怎样证明函数不等式(183

怎样用移项法构造函数证明函数不等式[必考] 183

怎样用换元法构造函数证明函数不等式 184

怎样用最值转化法证明函数不等式[必考] 184

怎样证明多元条件不等式 185

第三节怎样证明数列不等式(186

怎样构造数列,利用数列单调性证明数列不等式 186

怎样用比较法证明数列不等式 187

怎样证明与数列前n项和有关的不等式[必考] 187

怎样用数学归纳法证明数列不等式 189

第七章怎样解递推、归纳及求和问题

第一节怎样由递推式求数列通项公式(191

怎样用累加法求an+1=an+fn)型数列通项公式[必考] 191

怎样用累乘法求an+1=fnan型数列通项公式 192

怎样求an+1=can+dc0,1)型数列通项公式[必考] 192

怎样求an+1=can〖〗ban+dbcd0a10)型

数列的通项公式[必考] 193

怎样求an=can-1+dn+bc0,1)型数列的通项公式 193

怎样求an+1=can+drn+1c0,r0)型

数列的通项公式 194

怎样求an+1caknan0,c0)型数列的

通项公式 194

怎样利用anSn的关系求数列的通项公式[必考] 195

第二节怎样解“归纳—猜想—证明”类问题(197

怎样解与递推数列有关的归纳、猜想问题[必考] 197

怎样证明与递推数列有关的不等式 198

第三节怎样解数列求和问题(199

怎样用分组求和法求数列的和[必考] 199

怎样用错位相减法求数列的和[必考] 200

怎样用倒序相加法求数列的和[必考] 201

怎样用裂项法求数列的和[必考] 202

怎样用并项法求数列的和[必考] 202

第八章怎样解排列、组合问题

第一节怎样应用两个计数原理解题(204

怎样应用分类加法计数原理解题[必考] 205

怎样应用分步乘法计数原理解题[必考] 205

怎样解两个原理综合问题 205

第二节怎样解排列组合问题(206

怎样应用特殊元素(位置)优先法解题[必考] 206

怎样求解邻与不邻问题[必考] 207

怎样求解定序问题[必考] 207

怎样解分组问题[必考] 208

怎样解“相同元素”与“不同元素”分配问题 209

怎样用间接法解排列组合问题[必考] 209

怎样用树状图法解排列组合问题 209

第三节怎样解映射、涂色及几何图形中排列组合问题(211

怎样解映射与涂色问题[必考] 211

怎样解几何图形中排列组合问题 212

第三篇高考专题篇

第一章怎样解高考解答题

第一节怎样解三角综合题(214

怎样解三角恒等变换与三角函数性质、图象综合题[必考] 215

怎样解三角不等式问题 216

怎样解正、余弦定理的综合问题[必考] 216

怎样解三角形中的恒等变换问题[必考] 217

怎样解三角形面积问题[必考] 218

怎样解三角函数与平面向量的综合问题[必考] 219

第二节怎样解数列综合题(221

怎样解与等差、等比数列有关的计算题[必考] 221

怎样解与等差、等比数列有关的证明题[必考] 222

怎样解与等差、等比数列有关的不等式恒成立问题[必考] 223

第三节怎样解概率、统计综合题(224

怎样解有关统计图表问题[必考] 225

怎样计算一组数据的平均数与方差[必考] 226

怎样求线性回归方程[必考] 227

怎样解独立性检验问题[必考] 228

怎样求离散型随机变量的分布列、期望和方差[必考] 229

怎样解古典概型与分布列的综合问题[必考] 230

怎样解相互独立事件的概率与分布列的综合问题 230

怎样解二项分布问题[必考] 231

怎样解离散型随机变量概率综合问题[必考] 232

第四节怎样解立体几何综合题(236

怎样证明空间中的平行与垂直问题[必考] 236

怎样求空间几何体的体积[必考] 237

怎样求直线和平面所成角[必考] 238

怎样解三视图与空间几何体的综合题[必考] 239

怎样解与折叠有关的问题[必考] 240

第五节怎样解解析几何综合题(243

怎样解直线与圆锥曲线位置关系问题[必考] 244

怎样解直线与圆锥曲线的相交弦问题[必考] 245

怎样解直线与圆锥曲线有关的最值问题[必考] 246

怎样解定值问题[必考] 247

怎样解定点问题[必考] 248

怎样解圆锥曲线与向量综合问题[必考] 250

第六节怎样解函数、不等式与导数综合题(252

怎样利用导数求函数的单调区间 253

怎样利用导数求函数的极值[必考] 254

怎样利用导数研究方程的根[必考] 255

怎样利用函数单调性求参数的取值范围[必考] 256

怎样利用导数求不等式恒成立时参数的

值及取值范围 257

第二章怎样解创新探究题

第一节怎样解类比归纳问题(260

怎样解归纳推理问题[必考] 260

怎样解类比推理问题[必考] 261

第二节怎样解创新型问题(262

怎样解新运算型问题 262

怎样解新定义型问题[必考] 262

第三节怎样解探索性问题(263

怎样解解析几何中的探索性问题 264

怎样解立体几何中探索性问题 265

 

最近浏览过的

清空
010-61743009 010-61767818
服务时间:9:00 - 23:00